Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 441
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38593437

RESUMO

Wide-bandgap (WBG) inverted perovskite solar cells (PSCs) are used as the top cell for tandem solar cells, which is an effective way to outperform the Shockley-Queisser limit. However, the low efficiency and poor phase stability still seriously restrict the application of WBG inverted PSCs. Here, the surface of the WBG perovskite film was passivated by the synthesized 1,2,4-tris(3-thienyl)benzene (THB). The THB size well matches with the halogen ion vacancy on the perovskite surface, and the S atom in THB can strongly interact with Pb2+ on the surface of the WBG perovskite film to the greatest extent, which effectively passivates surface defects and suppresses the recombination of carriers caused by these defects. At the same time, the S atom in THB occupied the migration site of the halogen ions, which inhibits the migration of halogen ions. Due to the strong conjugation effect and stability of THB, it can be locked on the surface of perovskite to increase the lattice strength and inhibit the segregation of photoinduced halide, thus improving the performance and operational stability of PSCs. The THB-modified WBG (Eg = 1.71 eV) PSC achieves a maximum power conversion efficiency of 20.75%, and its 99.0% is retained after 1512 h at a relative humidity of 10-25%. Under the irradiation of 1000 lx LED light, the indoor power conversion efficiency of the THB-modified WBG PSC reaches 34.15%.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38606856

RESUMO

High-dose tigecycline is gradually being introduced for the treatment of serious infectious diseases due to the increasing difficulty in treating pan-resistant bacterial infections. However, the safety of high-dose tigecycline is controversial. We report the case of a 76-year-old female patient with cerebral hemorrhage who received high-dose tigecycline (100 mg q12h) with other drugs for ventilator-associated pneumonia. 25 days after admission, she developed acute liver failure, mainly manifested by abnormally high bilirubin, coagulation dysfunction, and gastrointestinal hemorrhage with hemorrhagic shock. According to the updated Roussel Uclaf causality assessment method, the patient's acute liver injury was most likely caused by tigecycline.

3.
J Mol Neurosci ; 74(2): 36, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568285

RESUMO

After ischemic stroke, microRNAs (miRNAs) participate in various processes, including immune responses, inflammation, and angiogenesis. Diabetes is a key factor increasing the risk of ischemic stroke; however, the regulatory pattern of miRNAs at different stages of diabetic stroke remains unclear. This study comprehensively analyzed the miRNA expression profiles in diabetic mice at 1, 3, and 7 days post-reperfusion following the middle cerebral artery occlusion (MCAO). We identified differentially expressed (DE) miRNAs in diabetic stroke and found significant dysregulation of some novel miRNAs (novel_mir310, novel_mir89, and novel_mir396) post-stroke. These DEmiRNAs were involved in apoptosis and the formation of tight junctions. Finally, we identified three groups of time-dependent DE miRNAs (miR-6240, miR-135b-3p, and miR-672-5p). These have the potential to serve as biomarkers of diabetic stroke. These findings provide a new perspective for future research, emphasizing the dynamic changes in miRNA expression after diabetic stroke and offering potential candidates as biomarkers for future clinical applications.


Assuntos
Diabetes Mellitus Experimental , AVC Isquêmico , MicroRNAs , Acidente Vascular Cerebral , Animais , Camundongos , Diabetes Mellitus Experimental/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Plantas Geneticamente Modificadas , Acidente Vascular Cerebral/genética , Biomarcadores
5.
Biochem Biophys Res Commun ; 711: 149920, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38615574

RESUMO

Tuberculosis (TB), a deadly infectious disease induced by Mycobacterium tuberculosis (Mtb), continues to be a global public health issue that kill millions of patents every year. Despite significant efforts have been paid to identify effective TB treatments, the emergence of drug-resistant strains of the disease and the presence of comorbidities in TB patients urges us to explore the detailed mechanisms involved in TB immunity and develop more effective innovative anti-TB strategies. HIF-1α, a protein involved in regulating cellular immune responses during TB infection, has been highlighted as a promising target for the development of novel strategies for TB treatment due to its critical roles in anti-TB host immunity. This review provides a summary of current research progress on the roles of HIF-1α in TB infection, highlighting its importance in regulating the host immune response upon Mtb infection and summarizing the influences and mechanisms of HIF-1α on anti-TB immunological responses of host cells. This review also discusses the various challenges associated with developing HIF-1α as a target for anti-TB therapies, including ensuring specificity and avoiding off-target effects on normal cell function, determining the regulation and expression of HIF-1α in TB patients, and developing drugs that can inhibit HIF-1α. More deep understanding of the molecular mechanisms involved in HIF-1α signaling, its impact on TB host status, and systematic animal testing and clinical trials may benefit the optimization of HIF-1α as a novel therapeutic target for TB.

6.
Plant Methods ; 20(1): 56, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659006

RESUMO

BACKGROUND: Traditional method of wood species identification involves the use of hand lens by wood anatomists, which is a time-consuming method that usually identifies only at the genetic level. Computer vision method can achieve "species" level identification but cannot provide an explanation on what features are used for the identification. Thus, in this study, we used computer vision methods coupled with deep learning to reveal interspecific differences between closely related tree species. RESULT: A total of 850 images were collected from the cross and tangential sections of 15 wood species. These images were used to construct a deep-learning model to discriminate wood species, and a classification accuracy of 99.3% was obtained. The key features between species in machine identification were targeted by feature visualization methods, mainly the axial parenchyma arrangements and vessel in cross section and the wood ray in tangential section. Moreover, the degree of importance of the vessels of different tree species in the cross-section images was determined by the manual feature labeling method. The results showed that vessels play an important role in the identification of Dalbergia, Pterocarpus, Swartzia, Carapa, and Cedrela, but exhibited limited resolutions on discriminating Swietenia species. CONCLUSION: The research results provide a computer-assisted tool for identifying endangered tree species in laboratory scenarios, which can be used to combat illegal logging and related trade and contribute to the implementation of CITES convention and the conservation of global biodiversity.

7.
Nano Lett ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635037

RESUMO

Exploring high-efficiency photocatalysts for selective CO2 reduction is still challenging because of the limited charge separation and surface reactions. In this study, a noble-metal-free metallic VSe2 nanosheet was incorporated on g-C3N4 to serve as an electron capture and transfer center, activating surface active sites for highly efficient and selective CO2 photoreduction. Quasi in situ X-ray photoelectron spectroscopy (XPS), soft X-ray absorption spectroscopy (sXAS), and femtosecond transient absorption spectroscopy (fs-TAS) unveiled that VSe2 could capture electrons, which are further transferred to the surface for activating active sites. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and density functional theory (DFT) calculations revealed a kinetically feasible process for the formation of a key intermediate and confirmed the favorable production of CO on the VSe2/PCN (protonated C3N4) photocatalyst. As an outcome, the optimized VSe2/PCN composite achieved 97% selectivity for solar-light-driven CO2 conversion to CO with a high rate of 16.3 µmol·g-1·h-1, without any sacrificial reagent or photosensitizer. This work offers new insights into the photocatalyst design toward highly efficient and selective CO2 conversion.

8.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(3): 257-266, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38512036

RESUMO

Objective To prepare anti-human B7 homolog 4 (B7-H4) egg yolk immunoglobulins (IgY) polyclonal antibody and establish a double-antibody sandwich ELISA for the detection of soluble B7-H4 (sB7-H4) protein in human serum. Methods Bioinformatics was used to screen specific B cell epitope peptides of human sB7-H4. New Hyland Grey laying hens were immunized with these peptides, and the eggs from the immunized hens were collected to purify chicken anti-human B7-H4 IgY antibody. The purity, concentration and titer of the antibody were detected, and its specificity and function of the antibodies were verified by using ELISA, Western blot analysis and flow cytometry, respectively. A double-antibody sandwich ELISA was established to detect sB7-H4 in clinical samples by using the IgY antibody. Comparative detection was performed using a commercialized ELISA kit on the same set of clinical samples. Results The chicken anti-human B7-H4 IgY antibodies were successfully prepared and proven to be highly specific for the human B7-H4 protein. The ELISA established with the IgY polyclonal antibody detected significantly higher levels of soluble B7-H4 in the serum of patients with ovarian cancer and benign ovarian tumors compared to healthy controls. These results were consistent with the detection results obtained using a commercialized ELISA kit. However, the ELISA with IgY antibody exhibited higher sensitivity than the commercialized kit. Conclusion The chicken polyclonal antibody against human B7-H4 IgY is successfully prepared, and a double-antibody sandwich ELISA suitable for detecting sB7-H4 protein in human serum is established.


Assuntos
Galinhas , Imunoglobulinas , Neoplasias Ovarianas , Humanos , Animais , Feminino , Anticorpos , Ensaio de Imunoadsorção Enzimática , Peptídeos
9.
Cancer Med ; 13(7): e7113, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38545824

RESUMO

BACKGROUND: In renal cell carcinoma (RCC), no clinically available biomarker has been utilized for checkpoint inhibitor immunotherapy (IO) + tyrosine kinase inhibitor (TKI) combinations. Galectin-1 overexpression is found in tumors, with potential immune-regulating roles. METHODS: RNA-sequencing was performed in two cohorts of RCC treated with IO/TKI combination therapy (ZS-MRCC, JAVELIN-101). Immunohistochemistry and flow cytometry were performed to investigate immune cell infiltration and function in the tumor microenvironment of RCC. The RECIST criteria were used to define response and progression-free survival (PFS). RESULTS: Galectin-1 expression was elevated in RCC with higher stage (p < 0.001) and grade (p < 0.001). Galectin-1 expression was also elevated in non-responders of IO/TKI therapy (p = 0.047). High galectin-1 was related with shorter PFS in both ZS-MRCC cohort (p = 0.036) and JAVELIN-101 cohort (p = 0.005). Multivariate Cox analysis defined galectin-1 as an independent factor for PFS (HR 2.505; 95% CI 1.116-5.622; p = 0.026). In the tumor microenvironment, high galectin-1 was related with decreased GZMB+CD8+ T cells (Speraman's ρ = -0.31, p = 0.05), and increased PD1 + CD8+ T cells (Speraman's ρ = 0.40, p = 0.01). Besides, elevated number of regulatory T cells (p = 0.039) and fibroblasts (p = 0.011) was also found in high galectin-1 tumors. Finally, a random-forest score (RFscore) was built for predicting IO/TKI benefit. IO/TKI therapy showed benefit only in low-RFscore patients (HR 0.489, 95% CI 0.358-0.669, p < 0.001), rather than high-RFscore patients (HR 0.875, 95% CI 0.658-1.163, p = 0.357). CONCLUSIONS: High galectin-1 indicated therapeutic resistance and shorter PFS of IO/TKI therapy. High galectin-1 also indicated CD8+ T cell dysfunction. High galectin-1 could be applied for patient selection of IO/TKI therapy in RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Galectina 1/genética , Galectina 1/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Proteínas Tirosina Quinases , Prognóstico , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Renais/patologia , Microambiente Tumoral
10.
Angew Chem Int Ed Engl ; 63(17): e202319529, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38443734

RESUMO

Limited triple-phase boundaries arising from the accumulation of solid discharge product(s) in solid-state cathodes (SSCs) pose a challenge to high-property solid-state lithium-oxygen batteries (SSLOBs). Light-assisted SSLOBs have been gradually explored as an ingenious system; however, the fundamental mechanisms of the SSCs interface behavior remain unclear. Here, we discovered that light assistance can enhance the fast inner-sphere charge transfer in SSCs and regulate the discharge products with spherical particles generated via the surface growth model. Moreover, the high photoelectron excitation and transportation capabilities of SSCs can retard cathodic catalytic decay by avoiding structural degradation of the cathode with a reduced charge voltage. The light-induced SSLOBs exhibited excellent stability (170 cycles) with a low discharge-charge polarization overpotential (0.27 V). Furthermore, transparent SSLOBs with exceptional flexibility, mechanical stability, and multiform shapes were fabricated for theory-to-practical applications in sunlight-induced batteries. Our study opens new opportunities for the introduction of solar energy into energy storage systems.

11.
J Colloid Interface Sci ; 664: 319-328, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479268

RESUMO

Rational construction of efficient and robust bifunctional oxygen electrocatalysts is key but challenging for the widespread application of rechargeable zinc-air batteries (ZABs). Herein, bifunctional ligand Co metal-organic frameworks were first explored to fabricate a hybrid of heterostructured CoOx/Co nanoparticles anchored on a carbon substrate rich in CoNx sites (CoOx/Co@CoNC) via a one-step pyrolysis method. Such a unique heterostructure provides abundant CoNx and CoOx/Co active sites to drive oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), respectively. Besides, their positive synergies facilitate electron transfer and optimize charge/mass transportation. Consequently, the obtained CoOx/Co@CoNC exhibits a superior ORR activity with a higher half-wave potential of 0.88 V than Pt/C (0.83 V vs. RHE), and a comparable OER performance with an overpotential of 346 mV at 10 mA cm-2 to the commercial RuO2. The assembled ZAB using CoOx/Co@CoNC as a cathode catalyst displays a maximum power density of 168.4 mW cm-2, and excellent charge-discharge cyclability over 250 h at 5 mA cm-2. This work highlights the great potential of heterostructures in oxygen electrocatalysis and provides a new pathway for designing efficient bifunctional oxygen catalysts toward rechargeable ZABs.

12.
Inorg Chem ; 63(12): 5709-5717, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38484381

RESUMO

The electron transport layer (ETL) plays an important role in determining the conversion efficiency and stability of perovskite solar cells (PSCs). Here, TiO2 thin film was prepared by irradiating diisopropoxy diacetylacetone titanium precursor thin film with 172 nm vacuum ultraviolet (VUV) at a low temperature. The prepared TiO2 thin film has higher electron mobility and conductivity. As it is used as an ETL for MAPbI3 PSCs, its band structure is better matched with the perovskite, and at the same time, due to the good interface contact, more uniform perovskite crystals are formed. Most importantly, a large number of hydroxyl radicals were formed during VUV irradiation of the precursor film, which made up for the oxygen defect present on the surface of the TiO2 thin film, and were adsorbed to the film surface. These hydroxyl groups form hydrogen bonds with methylammonium (MA) components on the MAPbI3 buried surface, thus promoting the transfer of photogenerated electrons at the MAPbI3/ETL interface. The power conversion efficiency of PSCs fabricated in air with the ETL prepared by VUV irradiation is 20.46%, which is higher than that of the contrast solar cell based on the sintered ETL (17.96%).

13.
Discov Oncol ; 15(1): 86, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519766

RESUMO

BACKGROUND: Immunotherapy (IO) plus tyrosine kinase inhibitor (TKI) therapy is the first-line recommendation for advanced renal cell carcinoma (RCC), but no biomarker has been approved for it. Annexin A2 (ANXA2) can induce immune escape in tumors. METHODS: Two independent cohorts of advanced RCC treated by IO + TKI were utilized for survival analysis (ZS-MRCC, n = 45; Javelin-101, n = 726). ANXA2 expression was determined by RNA-sequencing. The impact of ANXA2 on the tumor microenvironment was assessed by RNA-sequencing, flow cytometry and immunohistochemistry in two localized RCC datasets (ZS-HRRCC, n = 40; TCGA-KIRC, n = 530). RESULTS: ANXA2 was upregulated in non-responders of IO + TKI therapy (p = 0.027). High-ANXA2 group showed poor progression-free survival (PFS) in both the ZS-MRCC cohort (HR, 2.348; 95% CI 1.084-5.085; P = 0.025) and the Javelin-101 cohort (HR, 1.472; 95% CI 1.043-2.077; P = 0.027). Multivariate Cox regression determined ANXA2 as an independent prognostic factor (HR, 2.619; 95% CI 1.194-5.746; P = 0.016). High-ANXA2 was correlated with decreased proportion of granzyme B+ CD8+ T cells (Spearman's ρ = - 0.40, P = 0.01), and increased TIM-3+ (Spearman's ρ = 0.43, P < 0.001) and CTLA4+ (Spearman's ρ = 0.49, P < 0.001) tumor-infiltrating lymphocytes. A random forest (RF) score was further build by integrating ANXA2 and immune genes, which stratified patients who would benefit from IO + TKI therapy (low-RF score, IO + TKI vs TKI, HR = 0.453, 95% CI 0.328-0.626; high-RF score, IO + TKI vs TKI, HR = 0.877, 95% CI 0.661-1.165; interaction P = 0.003). CONCLUSIONS: Upregulated ANXA2 was associated with poor PFS and therapeutic resistance in RCC treated by IO + TKI therapy, and related with T cell exhaustion. The integrated RF score could stratify patients who would benefit from IO + TKI therapy.

14.
J Inflamm Res ; 17: 1397-1411, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476473

RESUMO

Purpose: To investigate the correlation between M1/M2 macrophages (M1/M2 Mφ) and cell death mode under Mycobacterium tuberculosis (Mtb) infection. Methods: Raw gene expression profiles were collected from the Gene Expression Omnibus (GEO) database. Genes related to different cell death modes were collected from the KEGG, FerrDb and GSEA databases. The differentially expressed genes (DEGs) of the gene expression profiles were identified using the limma package in R. The intersection genes of M1/M2 Mφ with different cell death modes were obtained by the VennDiagram package. Hub genes were obtained by constructing the protein-protein interactions (PPI) network and Receiver Operating Characteristic (ROC) curve analysis. The expression of cell death modes marker genes and Hub genes were verified by Western Blot and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). Results: Bioinformatics analysis was performed to screen Hub genes of Mtb-infected M1 Mφ and different cell death modes, naming NFKB1, TNF, CFLAR, TBK1, IL6, RELA, SOCS1, AIM2; Hub genes of Mtb-infected M2 Mφ and different cell death modes, naming TNF, BIRC3, MAP1LC3C, DEPTOR, UVRAG, SOCS1. Combined with experimental validation, M1 Mφ under Mtb infection showed higher expression of death (including apoptosis, autophagy, ferroptosis, and pyroptosis) genes compared to M2 Mφ and genes such as NFKB1, TNF, CFLAR, TBK1, IL6, RELA, AIM2, BIRC3, DEPTOR show differential expression. Conclusion: NFKB1, TNF, CFLAR, TBK1, IL6, RELA, AIM2 in Mtb-infected M1 Mφ, and TNF, BIRC3, DEPTOR in Mtb-infected M2 Mφ might be used as potential diagnostic targets for TB. At early stage of Mtb infection, apoptosis, autophagy, ferroptosis, and pyroptosis occurred more significantly in M1 Mφ than that in M2 Mφ, which may contribute to the transition of Mtb-infected Mφ from M1-dominant to M2-dominant and contribute to the immune escape mechanisms of Mtb.

15.
Sci Total Environ ; 921: 171195, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38408673

RESUMO

Low-molecular-weight organic acids (LMWOAs) and nano- and micro-plastics (NPs and MPs) are both widely distributed in terrestrial systems. To better understand the influence of LMWOAs on the transport of NPs and MPs, the effects of 0.5 mM citric- (CA), malic- (MA), and tartaric- (TA) acid on the transport of nano- (0.51 µm, PS NPs) and micro- (1.1 µm, PS MPs) polystyrene particles (2 mg L-1) in saturated quartz sand were investigated. All three LMWOAs decreased the transport of PS NPs and MPs, regardless of ionic composition or strength (0.1-10 mM NaCl and 0.1-1 mM CaCl2). Further investigation revealed that the interfacial interactions between PS-quartz sand surfaces and PS-PS were altered by LMWOAs. LMWOAs adsorbed to quartz sand surfaces could serve as new deposition sites, as evidenced by the decreased transport of PS NPs and MPs in quartz sand that was subjected to pre-equilibration with selected MA, the low inhibition of PS transport with low concentrations of LMWOAs (0.1 mM), and also the adsorption of LMWOAs onto quartz sand surfaces by batch experiments. Meanwhile, the adsorption of LMWOAs on PS, hydrodynamic measurement and visual TEM observation together clarified the slight aggregation of PS NPs and MPs in suspensions, inducing the subsequent decrease in transport. Among them, the adsorption of LMWOAs onto quartz sand surfaces was found to be the main factor dominating the decreased transport of both PS NPs and MPs in saturated quartz sand.

16.
Phys Med Biol ; 69(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38382097

RESUMO

Objective. Accurate and automatic detection of pulmonary nodules is critical for early lung cancer diagnosis, and promising progress has been achieved in developing effective deep models for nodule detection. However, most existing nodule detection methods merely focus on integrating elaborately designed feature extraction modules into the backbone of the detection network to extract rich nodule features while ignore disadvantages of the structure of detection network itself. This study aims to address these disadvantages and develop a deep learning-based algorithm for pulmonary nodule detection to improve the accuracy of early lung cancer diagnosis.Approach. In this paper, an S-shaped network called S-Net is developed with the U-shaped network as backbone, where an information fusion branch is used to propagate lower-level details and positional information critical for nodule detection to higher-level feature maps, head shared scale adaptive detection strategy is utilized to capture information from different scales for better detecting nodules with different shapes and sizes and the feature decoupling detection head is used to allow the classification and regression branches to focus on the information required for their respective tasks. A hybrid loss function is utilized to fully exploit the interplay between the classification and regression branches.Main results. The proposed S-Net network with ResSENet and other three U-shaped backbones from SANet, OSAF-YOLOv3 and MSANet (R+SC+ECA) models achieve average CPM scores of 0.914, 0.915, 0.917 and 0.923 on the LUNA16 dataset, which are significantly higher than those achieved with other existing state-of-the-art models.Significance. The experimental results demonstrate that our proposed method effectively improves nodule detection performance, which implies potential applications of the proposed method in clinical practice.


Assuntos
Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Humanos , Redes Neurais de Computação , Nódulo Pulmonar Solitário/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Imageamento Tridimensional/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Pulmão
17.
Molecules ; 29(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38338407

RESUMO

Novel bamboo activated carbon (BAC) catalysts decorated with manganese oxides (MnOx) were prepared with varying MnOx contents through a facile one-step redox reaction. Due to the physical anchoring effect of the natural macropore structure for catalyst active components, homogeneous MnOx nanoparticles (NPs), and high specific surface area over catalyst surface, the BAC@MnOx-N (N = 1, 2, 3, 4, 5) catalyst shows encouraging adsorption and catalytic oxidation for indoor formaldehyde (HCHO) removal at room temperature. Dynamic adsorption and catalytic activity experiments were conducted. The higher Smicro (733 m2/g) and Vmicro/Vt (82.6%) of the BAC@MnOx-4 catalyst could facilitate its excellent saturated and breakthrough adsorption capacity (5.24 ± 0.42 mg/g, 2.43 ± 0.22 mg/g). The best performer against 2 ppm HCHO is BAC@MnOx-4 catalyst, exhibiting a maximum HCHO removal efficiency of 97% for 17 h without any deactivation as RH = 0, which is higher than those of other MnOx-based catalysts. The average oxidation state and in situ DRIFTS analysis reveal that abundant oxygen vacancies on the BAC@MnOx-4 catalyst could be identified as surface-active sites of decomposing HCHO into the intermediate species (dioxymethylene and formate). This study provides a potential approach to deposit MnOx nanoparticles onto the BAC surface, and this hybrid BAC@MnOx material is promising for indoor HCHO removal at room temperature.

18.
Int J Ophthalmol ; 17(2): 348-352, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371254

RESUMO

AIM: To investigate the efficacy of a new visual acuity (VA) screening method, the baby vision test for young children. METHODS: A total 105 eyes of 65 children aged 2-8y were included in the study. Acuity testing was conducted using a standardized recognition acuity chart (Snellen visual chart: at 3 m) and the baby vision model assessment. The baby vision device includes a screen, a near infrared camera and a computer. Children were seated at a measured distance of 33-40 cm from a display for testing. VA was estimated according to the highest resolution the children could follow. Decimal VA data were converted to logarithm of the minimum angle of resolution (logMAR) for statistical analysis. The VA results for each child were recorded and analyzed for consistency. RESULTS: The mean VA measured using the Snellen visual chart was 0.62±0.32, and that assessed using the baby vision test was 0.66±0.27. The 95% limit of agreement was -0.609 to 0.695, with 95.2% (100/105) plots within the 95% limits of agreement. VA values of the baby vision test were significantly correlated with those of the Snellen chart (R=0.274, P=0.005). CONCLUSION: The baby vision test can be used as a relatively reliable method for estimating VA in young children. This new acuity assessment might be a valid predictor of optotype-measured acuity later in preverbal children.

19.
J Imaging Inform Med ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38361006

RESUMO

We aimed to develop and validate a deep learning-based system using pre-therapy computed tomography (CT) images to detect epidermal growth factor receptor (EGFR)-mutant status in patients with non-small cell lung cancer (NSCLC) and predict the prognosis of advanced-stage patients with EGFR mutations treated with EGFR tyrosine kinase inhibitors (TKI). This retrospective, multicenter study included 485 patients with NSCLC from four hospitals. Of them, 339 patients from three centers were included in the training dataset to develop an EfficientNetV2-L-based model (EME) for predicting EGFR-mutant status, and the remaining patients were assigned to an independent test dataset. EME semantic features were extracted to construct an EME-prognostic model to stratify the prognosis of EGFR-mutant NSCLC patients receiving EGFR-TKI. A comparison of EME and radiomics was conducted. Additionally, we included patients from The Cancer Genome Atlas lung adenocarcinoma dataset with both CT images and RNA sequencing data to explore the biological associations between EME score and EGFR-related biological processes. EME obtained an area under the curve (AUC) of 0.907 (95% CI 0.840-0.926) on the test dataset, superior to the radiomics model (P = 0.007). The EME and radiomics fusion model showed better (AUC, 0.941) but not significantly increased performance (P = 0.895) compared with EME. In prognostic stratification, the EME-prognostic model achieved the best performance (C-index, 0.711). Moreover, the EME-prognostic score showed strong associations with biological pathways related to EGFR expression and EGFR-TKI efficacy. EME demonstrated a non-invasive and biologically interpretable approach to predict EGFR status, stratify survival prognosis, and correlate biological pathways in patients with NSCLC.

20.
Small ; : e2400087, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377283

RESUMO

Increasing the charging cutoff voltage of LiCoO2 to 4.6 V is significant for enhancing battery density. However, the practical application of Li‖LiCoO2 batteries with a 4.6 V cutoff voltage faces significant impediments due to the detrimental changes under high voltage. This study presents a novel bifunctional electrolyte additive, 2-(trifluoromethyl)benzamide (2-TFMBA), which is employed to establish a stable and dense cathode-electrolyte interface (CEI). Characterization results reveal that an optimized CEI is achieved through the synergistic effects of the amide groups and trifluoromethyl groups within 2-TFMBA. The resulting CEI not only enhances the structural stability of LiCoO2 but also serves as a high-speed lithium-ion conduction channel, which expedites the insertion and extraction of lithium ions. The Li‖LiCoO2 batteries with 0.5 wt% 2-TFMBA achieves an 84.7% capacity retention rate after enduring 300 cycles at a current rate of 1 C, under a cut-off voltage of 4.6 V. This study provides valuable strategic insights into the stabilization of cathode materials in high-voltage batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...